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Analysis of the Coaxial Helical-Groove
Slow-Wave Structure

Guofen Yu, Wenxiang Wang, Yanyu Wei, and Shenggang Liu

Abstract—The coaxial helical-groove structure is presented
and analyzed in this paper. The dispersion equation and coupling
impedance of the structure are given. Numerical calculations of
the dispersion relation and coupling impedance with different
structure dimensions are carried out. Calculated results indicate
that the cold bandwidth of this structure can reach 60%, while the
coupling impedance is more than 16
. It shows that the coaxial
helical groove is a wide-band slow-wave structure with high-power
capacity.

Index Terms—Coaxial helical-groove slow-wave structure, cou-
pling impedance, dispersion relation, slow-wave structure.

I. INTRODUCTION

A S A KEY component of beam-wave interaction in a trav-
eling-wave tube (TWT), the slow-wave circuit directly in-

fluences the TWT’s characteristics. It influences not only the
TWT’s operation bandwidth, but also its power capacity. In
most cases, there is conflict between the bandwidth and power
capacity. This problem is to some extent linked to the open-
ness of the slow-wave system [1]. A wider bandwidth requires
an increase in the openness within a certain dimensional range.
On the other hand, to improve heat dissipation and to increase
the power capacity requires more closeness with the metal en-
velope. Therefore, the often used slow-wave system, helix or
coupled cavity, is of either broad bandwidth or high-power ca-
pacity. With the development of recent technological innova-
tions, some larger power helix TWTs [2]–[6] and middle-band
coupled-cavity TWTs [7] have been built. However, these de-
vices do not completely meet the need of development of high-
power and broad-band TWTs. Thus, seeking a new slow-wave
structure possessing broader bandwidth and higher power ca-
pacity simultaneously is still very important.

The new structure presented in this paper is a coaxial he-
lical-groove one, as shown in Fig. 1. It is an all-metal circuit.
Therefore, it possesses properties such as large size, good heat
dissipation, and so on. As it is a coaxial system, its lower cutoff
frequency is zero. Therefore, it can be a broad-band and high-
power circuit.

The ordinary helical-groove waveguide was studied both
in slow- and fast-wave regimes [8]–[11]. The helical-groove
system with an inner conductor was also analyzed [12]. How-
ever, to the best of the authors’ knowledge, no reports about the
coaxial helical-groove system have been seen up to now. In this
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Fig. 1. Configuration of a coaxial helical-grove circuit.

paper, this structure was analyzed in the slow-wave regimes.
The expressions of dispersion relation and coupling impedance
of the coaxial helical-groove structure have been obtained
by using the field-matching method. These expressions are
general ones, and they can be easily changed into those of its
special cases, i.e., a helical groove [10], helical groove with
an inner conductor [12], and helical groove with an outer
cylinder (no report was seen by the authors of this paper).
Intensive calculations of the obtained dispersion relation and
coupling impedance with a variety of structure dimensions
have been carried out. This paper is organized as follows.
Section I presents a brief introduction. Section II presents the
field expressions in the circuit and the relations between the
cylindrical and helical coordinate systems. Sections III and
IV deal with the derivation of the dispersion equation and
the coupling impedance, respectively. Numerical results and
discussions are presented in Section V. A short conclusion is
presented in Section VI. Finally, dispersion relations, expres-
sions of longitudinal electric fields, and power flows for the
three special structures mentioned above are presented in the
Appendix.

II. FIELDS IN THE COAXIAL HELICAL-GROOVE CIRCUIT

As shown in Fig. 1, , , and are the inner and outer radii
and groove width of the inner groove, respectively. While, ,
and are the inner and outer radii and groove width of the outer
groove, respectively. refers to the relative displacement in the
longitudinal direction between the inner and outer grooves. We
assume that the inner and outer grooves have the same period.
Expressed in terms of cylindrical coordinates, , , the space
of the coaxial helical-groove structure can be divided into the
following three regions.
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Fig. 2. Diagram for the relation between cylindrical and helical coordinate
systems on surfacer = r .

• Region I, the inner groove space

• Region II, the interaction region

• Region III, the outer groove space

where is the order of the groove.
For the convenience of expressing the fields, in Region II,

the cylindrical coordinates, , and are used, in Regions I
and III, the helical coordinates, , and are employed. is
along the helical direction. The direction ofis perpendicular
to the directions of and . The relationship between the two
coordinate systems on the surface is shown in Fig. 2. It
will be discussed in detail in Section II-C. The relationship on

is similar.

A. Fields in the Interaction Region

Both the slow and fast waves may propagate in the interaction
region due to the metal envelope of the structure. Expressed in
TE and TM modes, the fields in the interaction region can be

written as (1), shown at the bottom of this page, whereand
are the radial and axial propagation constants of theth space
harmonic, respectively., , and are the order of the space
harmonics, angular frequency, and permeability of free space,
respectively. is the wavenumber in free space. If

, the th space harmonic represents the slow-wave mode,
then , , and the upper
sign of “ ” or “ ” in front of some expressions should be used.
If , the th space harmonic is the fast-wave
mode, and then , , and
the lower sign of “ ” or “ ” is used. and represent the
first and second types of modified Bessel functions of order,
respectively. and are the first and second types of ordinary
Bessel functions, respectively.

It should be noted that the axial and angular harmonic num-
bers in (1) are the same. This is because helical groove struc-
tures have periodicity in both axial and helical directions. With
respect to the axial translation by a distance , the angular
translation would be . Making use of this condition
and Floquet theorem, it can be shown that the axial and angular
harmonic numbers in (1) should be the same.

B. Fields in Regions I and III

In the grooves, the modes with higher orders are evanescent
ones. Only the modes with a homogeneous electric field across
the breadth of the grooves need to be taken into account [12].
We assuming waves in the grooves propagate along the he-
lical direction. The longitudinal propagation constants for the
modes with a homogeneous electric field across the breadth of
the grooves are zeros, therefore, . Waves in grooves are
fast waves. Fields in regions I and III can be written as

(2)
where is the azimuthal propagation coefficient referring to
the wavenumber in one revolution. Whenis an integer ,

in (2) should be replaced by . It is clear that

(1)
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and

(3)

C. Conversion Between Cylindrical and Helical Coordinate
Systems

Suppose , , , and are pitch angles on surfaces
, , , and , respectively. If all the

pitch angles are small enough, i.e., ,
, ,

, then can be measured by its projection on the
plane perpendicular to the axis. In practice, periodis small
compared with radii, thus, it is reasonable to measureby its
projection.

It can be seen in (2) that electric fields in Regions I and III are
independent of , but they are related to and, therefore, to.
When matching conditions of the fields at boundaries are used,
the relations between cylindrical and helical coordinates need
to be known. As shown in Fig. 2, suppose coordinatesand
at point on the central line of the groove are
and , respectively. is an arbitrary point
at the axis on surface . is the projection of to the
helical direction. Suppose the change offrom point to point

is , then the variation for is

thus,

(4)

Expression (4) indicates the relation between cylindrical and
helical coordinate systems on surface . Their relation on
surface is similar.

III. D ISPERSIONEQUATION

To obtain the dispersion equation, the following boundary and
matching conditions of fields are needed.

• Boundary condition on surface

(5)

• Boundary condition on surface

(6)

• Matching conditions of electric fields on surface
are shown in (7) and (8) at the bottom of this page.

• Matching conditions of electric fields on surface
are shown in (9) and (10) at the bottom of this page.

• Matching condition of magnetic fields on surface

(11)

• Matching condition of magnetic fields on surface

(12)

According to field expressions (2) and boundary conditions (5)
and (6), field coefficients in regions I and III can be written as

where and are ratio coefficients in regions I and III,
respectively.

(7)

(8)

(9)

(10)
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By making use of the above coefficients and (7)–(10), we
can obtain the coefficients of fields in region II, as shown in
(13)–(16) at the bottom of this page, where

Substituting (13)–(16) into (11), we can get the relation between
and . Substituting (13)–(16) into (12) and using the

relation between and , the dispersion equation is then
finally derived as shown in (17) at the bottom of this page, where

The obtained dispersion equation [i.e., (17)] is a general form
for helical-groove type circuits. It can be easily changed into
the dispersion equations of the following three special cases:

1) helical-groove structure without an inner groove;
2) helical-groove structure with a coaxial inner conductor;
3) inner helical-groove structure with an outer cylinder (see

Appendix).

IV. COUPLING IMPEDANCE

In a TWT, coupling impedance, which is a measure of the
coupling between the electric field and one electron beam in
the interaction region for a given electromagnetic power, deter-
mines the coupling between the wave and beam. It is an im-
portant parameter for the gain and efficiency of a tube. From

(13)

(14)

(15)

(16)

(17)
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Pierce’s theory [13], the coupling impedance of theth space
harmonic is defined as

(18)

where is the longitudinal component of theth space har-
monic at the position of the electron beam, and is its con-
jugate. is the total power flow through the whole circuit

where and are the power flows in regions I and III,
respectively. is the power flow of the th space harmonic
in region II.

According to (1), we have

(19)

Using the obtained expressions for the field coefficients, the
power flow in each region can be written as follows:

(20)

(21)

Fig. 3. Dispersion curves for a helical waveguide (for comparison with [10])
r =r = 4:0,L=r = 0:5,w=L =W=L = 0:4 e: r =r = r =r = 0:0; f :
r =r = r =r = 0:3; g: r =r = r =r = 0:6; h: r =r = r =r = 0:8.

To shorten (21), , , etc., are written as , ,
etc.,

(22)

In the process of deriving and , some relevant integral
formulas of Bessel functions are used. Substituting (19)–(22)
into (18), the expression of the coupling impedance for a coaxial
helical-groove circuit can be written out directly.

Similarly, the expressions of the coupling impedance for the
three special cases can also be derived (see Appendix).

V. RESULTS OFNUMERICAL CALCULATIONS

The dispersion relation, i.e., (17), is a very complex tran-
scendental equation including the integrals of different types of
Bessel functions and the summations of infinite series. Fortu-
nately, the series converges rapidly asincreases. Considering
only four terms, i.e., and , we can get solution
with a relative error of less than 10. In the practical calcula-
tions, seven terms were taken into account. To verify our calcu-
lation, we compared our results with Foulds and Mansell’s re-
port [10] for a special case of the coaxial helical-groove struc-
ture, i.e., a helical-groove structure with a coaxial inner con-
ductor. Fig. 3 shows our calculated curves. They are the same
as [10, Fig. 25].

Using the data from the calculation of dispersion relation, we
calculated coupling impedance according to (18). The coupling
impedance is calculated by assuming that a thin electron beam
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(a)

(b)

Fig. 4. Dispersion curve and coupling impedance change with parameterr

(a) Dispersion curves. (b) Coupling impedancer =r = 0:71, r =r = 2:86,
L=r = 0:36,w =W = 0:14, S = 0:0 1: r =r = 0:29; 2: r =r = 0:43;
3: r =r = 0:57.

moves along the ports of the outer groove, i.e., the radius of
the electron beam is equal to, except in the case of the inner
groove with an outer cylinder where the radius of the electron
beam is supposed to be. All the impedance curves refer to
zeroth-order space harmonic.

The calculation results are described as follows. The normal-
ized phase velocity and coupling impedance varying with ra-
dius are given in Fig. 4(a) and (b), respectively. It is clear in
Fig. 4(a) that phase velocity increases with. This is easy to be
understood. With the increase of, the inner groove becomes
shallower. If both the inner and outer grooves become shallower
and shallower, the structure approaching a coaxial line, and then
the normalized phase velocity should approach one. Obviously,
the shallower the grooves, the higher the phase velocity. It is
consistent with our calculation. By the phase velocity changing
with frequency (or wavenumber), the cold bandwidth of a struc-
ture can be estimated. Within the operation region, the more
slowly the phase velocity changes with frequency, the wider the
bandwidth. It is clear in Fig. 4(a) that with the increase of,
the bandwidth decrease. In Fig. 4(b), the increase of coupling
impedance with is also understandable because the fields are
pushed into the interaction region by increasing.

The influences of the structure period on the slow-wave
characteristics are indicated in Fig. 5(a) and (b). As shown in
Fig. 5(a), with the increase of period, the phase velocity rises

(a)

(b)

Fig. 5. Dispersion curve and coupling impedance change with parameterL
(a) Dispersion curves. (b) Coupling impedancer =r = 0:5, r =r = 0:8,
r =r = 4:0, w = W = 0:1, S = 0:0 1: L=r = 0:25; 2: L=r = 0:5; 3:
L=r = 0:75.

and the rate of phase velocity changing with frequency increase
a little, therefore the bandwidth decrease a little. The coupling
impedance drops with the increase of period, as shown in
Fig. 5(b).

Fig. 6 is an optimum calculation result, i.e., the bandwidth is
optimized while keeping the coupling impedance equal or larger
than 16 . It can be seen from Fig. 6(a) that for changing
from 0.167 to 0.310, the phase velocity changes from 0.484 to
0.460; the variation compared with mean value, 0.472, is less
than 5%. If calculated according to this variation, the cold band-
width reaches 60% . Mean-
while, as shown in Fig. 6(b), the coupling impedance of the ze-
roth-order space harmonic is greater than 16. On the other
hand, the coupling impedance of the1 space harmonic is very
small, and this behavior is very important for TWTs.

Fig. 7(a) and (b) is a comparison between a coaxial helical-
groove structure and a noncoaxial one. Curve 1 is for the coaxial
helical-groove circuit and curve 2 is for the noncoaxial circuit.
It is obvious in Fig. 7(a) that the phase velocity of the coaxial
helical-groove structure changes much more slowly than that
of the noncoaxial helical-groove structure, therefore, the band-
width of the coaxial helical-groove circuit is much broader. Nu-
merical calculations also show that the two special coaxial struc-
tures, i.e., the: 1) helical-groove structure with a coaxial inner
conductor and 2) inner helical-groove structure with an outer
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(a)

(b)

Fig. 6. Calculation of optimized bandwidth while keeping coupling
impedance larger than 16
 (a) Dispersion curves. (b) Coupling impedance
r =r = 0:44,r =r = 0:67,r =r = 4:44,L=r = 0:67,w =W = 0:44,
S = 0:0.

cylinder, can also reach broader bandwidth. The most distin-
guishing difference between the coaxial helical-groove struc-
ture and these two special cases are that the phase velocity of
the coaxial helical-groove structure is lower and easier to adjust.
The bandwidth of the coaxial helical-groove structure is a little
broader. Fig. 7(b) shows that, at its narrow operation frequency
range, the noncoaxial helical-groove structure has a higher cou-
pling impedance.

From the above analysis, it can be seen that the coaxial he-
lical-groove structure has a low dispersion, namely, it has a large
potential application in broad-band TWTs. However, compared
to a coupled-cavity structure [14], the value of the coupling
impedance is relatively low, which would lead to a decrease in
the gain and efficiency of the device. The coupling impedance of
this type of structures can be increased to some extent by ridge
loading at the inner groove mouth [15].

VI. SUMMARY

The coaxial helical-groove structure has presented in this
paper. Its dispersion characteristic and coupling impedance are
analyzed by the field-matching method. The obtained expres-
sions of the dispersion relation and coupling impedance are
general forms, and they can be easily changed into those of the
three special cases. The calculated results of normalized phase

(a)

(b)

Fig. 7. Comparison between the coaxial helical-groove structure and its two
special cases. (a) Dispersion curves. (b) Coupling impedancer = 1:0, r =

4:0, L = 0:6, w = W = 0:3 1: r = 0:4, r = 0:8; 2: r = r = 0:8; 3:
r = r = 0:0.

velocity and coupling impedance varying with some structural
dimensions are given and analyzed. Calculation results show
that the cold bandwidth of the coaxial helical-groove circuit
can reach 60%; meanwhile, its coupling impedance is more
than 16 . As it is an all-metal structure, its power capacity
should be high. Therefore, the coaxial helical-groove structure
presented and analyzed in this paper is suitable for broad-band
and high-power TWTs.

APPENDIX

EXPRESSIONS OFDISPERSIONRELATIONS, LONGITUDINAL

ELECTRICAL FIELDS, AND POWER FLOWS FOR THETHREE

SPECIAL CASES OF ACOAXIAL HELICAL-GROOVESTRUCTURE

A. Helical-Groove Structure Without an Inner Helical Groove

Since there is not an inner helical groove, in this type of struc-
ture

(A-1)
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and

(A-2)
The dispersion equation becomes

(A-3)

It is the same as that given by Foulds and Mansell in [10].
The expression for can be written as

(A-4)

The power flows in the three regions are

(A-5)

(A-6)

where and are given by (A-1) and (A-2), respectively.
To shorten (A-6), , , etc. are written as ,

, etc.
has the same form as (22) in Section III.

B. Helical-Groove Structure With a Coaxial Inner Conductor

In this type of structure, , , but
. Thus, in the expressions of fields, there exist not

only the first type of Bessel function, but also the second type.
The coefficients of fields are simplified as

(A-7)

where

(A-8)

(A-9)

The dispersion equation can be written as

(A-10)

It is identical with the result obtained by Henoch in [12].
The expression for is

(A-11)

The power flows in the three regions are

(A-12)

(A-13)

where and are given by (A-8) and (A-9). has the
same form as (22) in Section III.

C. Inner Helical-Groove Structure With an Outer Cylinder

In this case, , , and .
The boundary condition on surface is .
Making use of this condition, we can get

(A-14)
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where

(A-15)

(A-16)

The dispersion equation now becomes

(A-17)

We have not seen a report about this type of structure.
The expression for is

(A-18)
The power flows in the three regions are as follows.has the
same form as (20) in Section III as follows:

(A-19)

(A-20)

Substituting the power flows and longitudinal field components
into (18) in Section IV, the coupling impedance for each special
case can be obtained directly.
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